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Abstract
We study the spin-dependent electronic transport through a one-dimensional ballistic quantum
wire in the presence of Rashba spin–orbit interaction. In particular, we consider the effect of the
spin–orbit interaction resulting from the lateral confinement of the two-dimensional electron
gas to the one-dimensional wire geometry. We generalize a situation suggested earlier (Strěda
and Sěba 2003 Phys. Rev. Lett. 90 256601) which allows for spin-polarized electron transport.
As a result of the lateral confinement, the spin is rotated out of the plane of the two-dimensional
system. Furthermore we investigate the spin-dependent transmission and the polarization of an
electron current at a potential barrier. Finally, we construct a lattice model which shows similar
low-energy physics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Spin–orbit coupling is a relativistic effect of order O(v2/c2),
where v is the electron velocity, which follows directly from
the Dirac equation. It is described by the Hamiltonian (for
∇ × E = 0)

HSO = − eh̄

4m2c2
σ ·

[
E ×

(
p − e

c
A

)]
, (1)

where the electric field E = −∇V/e (e < 0 is the electron
charge) is the gradient of the ambient potential. In the
following, the correction −eA/c to the canonical momentum
is abandoned, which is a valid approximation in the limit of a
weak magnetic field leading to a magnetic length larger than
the width of the ambient confining potential (see below) [1].
In order to confine electrons to nanostructure devices, sharp
potentials are necessary, which lead to non-negligible spin–
orbit interaction (SOI), especially in systems with structural
inversion asymmetry like e.g. semiconductor heterostructures.
This effect can be used to achieve control over the electron
spin and leads to spin-dependent transport properties, such as
spin-polarized currents, even in systems without ferromagnetic
leads.

The emerging field of spintronics might result in the
extensive use of the spin degree of freedom for information
processing [2, 3]. In a two-dimensional electron gas (2DEG)

obtained by a strong confinement in the z-direction, the SOI is
usually described by the so-called Rashba term

HR = h̄

m
αz

(
σx py − σy px

)
, (2)

contributing to the Hamiltonian of the electron system [3, 4].
Here, the components of the electron momentum operator are
denoted by pi , the Pauli matrices by σi , and αz ∝ Ez is the
SOI coupling coefficient set by the confining electric field3.
As discussed by Datta and Das [5], a further confinement of
the 2DEG to a wire geometry allows for a particular control
over the spin, if αz or the length of the wire are varied. This
insight led to extensive studies on the transport properties
of noninteracting electrons in quasi one-dimensional (1D)
quantum wires with SOI [1, 6–11]. In particular, the effect of
subband mixing [6–8, 10] and a magnetic field perpendicular
to the plane of the underlying 2DEG [11] was investigated.

A very promising candidate for a system to experimentally
produce spin-polarized currents using SOI is the setup
suggested by Strěda and Sěba where the magnetic field points
in the wire direction and an additional potential step is placed
in the quantum wire [1, 9]. It is assumed that due to
the large energy level spacing only the lowest subband of
the quantum wire is occupied and subband mixing can be

3 The SOI coupling coefficients αi are assumed to be independent from the
coordinates j �= i , i.e. ∂i ∂ j V = 0, with i, j = x, y, z and i �= j .

0953-8984/08/085226+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/8/085226
http://stacks.iop.org/JPhysCM/20/085226


J. Phys.: Condens. Matter 20 (2008) 085226 J E Birkholz and V Meden

Figure 1. (a) A potential step of height V0 and (b) a potential barrier
of height V0 and width 2xc . The corresponding dispersions in the
different regions are sketched (solid line: s = +, dashed line:
s = −).

neglected. Restricting the considerations to this subband, one
does not have to include explicitly the potential confining
the electrons to the wire. Furthermore, the strong lateral
confinement allows to take into account only the momentum in
the wire direction, px = p, py = pz = 0 in equation (2). The
energy dispersion of the 1D electron gas ε0(k) = h̄2k2/(2m),
where k = kx , is split by the Rashba term equation (2) into two
branches ε(s)(k) = h̄2(k + sαz)

2/(2m) − Eαz , with s = ± and
Eαz = h̄2α2

z /(2m). The eigenenergies are fourfold degenerate
with two left and two right moving states. The spin expectation
values are 〈σy〉k,s = s and 〈σx 〉k,s = 〈σz〉k,s = 0, independent
of k. In the presence of an external magnetic field (parallel to
the wire), described by a Zeeman term

HZ = εZσx/2, (3)

an ‘energy gap’ of size εZ opens up at k = 0 (see figure 1(a))
and states within this ‘gap’ are only twofold degenerate (one
left and one right moving state). A potential step can then be
used to generate a tunable spin polarization, in mainly the y-
direction, of the linear response current. In order to achieve
this, the height of the step V0 > 0 for wire positions x < 0 has
to be chosen such that the energy falls into the ‘gap’ region,
while for the potential free part x > 0 it lies sufficiently
above the ‘gap’ (see figure 1(a)). As an additional effect
of the magnetic field, the spin expectation value is rotated
gradually from the ±y-direction into the ±x-direction when
|k| → 0, while 〈σz〉k,s remains zero. Depending on the
chosen parameters, this leads to a small x-component of the
ground state magnetization, whereas the y- and z-components
are exactly zero as will be explained below.

Here we generalize the situation studied in [1] in several
ways. We first study how the above scenario is modified in the
presence of an additional Rashba term

H ′
R = h̄

m
αyσz px (4)

resulting from the confinement of the 2DEG to the wire
geometry, a term which so far was mainly ignored. As we
also focus on the lowest subband and do not study subband
mixing, the exact shape of the potential confining the electrons
to the wire is not important. As its main effect, H ′

R will
lead to nonvanishing spin expectation values 〈σz〉k,s and thus
a spin polarization component perpendicular to the plain of
the underlying 2DEG. We also study the transmission current
and the spin polarization at a potential barrier and discuss

the interplay of αy and αz . In addition, we present a lattice
model which in an appropriate parameter regime shows the
same physics as the continuum model. Within this model it is
possible to study the effect of the electron–electron interaction
on the spin polarization using the functional renormalization
group method [12, 13].

2. Continuum model

The model we consider is given by the Hamiltonian

H = p2
x

2m
− h̄αz

m
σy px + h̄αy

m
σz px − geh̄

4m0c
σ · B, (5)

where m0 is the electron mass in vacuum. m is the effective
electron mass and g is the effective Landé factor, both of
which strongly depend on the details of the experimental
setup [3]. Despite the fact, that for a magnetic field
with a significant component not pointing in the x-direction
neglecting −eA/c in equation (1) might be difficult to
justify we, for completeness, slightly generalize the situation
discussed above and allow for a Zeeman term with a magnetic
field B = B(sin θ cos ϕ, sin θ sin ϕ, cos θ) pointing in an
arbitrary direction. The normalized eigenstates with quantum
numbers k and s = ± are given by the product of a plane wave
(in the x-direction) and a two-component spinor

φ
(s)
k (x) = 1√

2π
eikx

(
A(s)

k

B(s)
k

)
. (6)

Applying the Hamiltonian equation (5) to this ansatz we obtain

(
k2 + 2αyk + 2k2

Z cos θ − ε, 2ikαz + 2k2
Ze−iϕ sin θ

2ikαz + 2k2
Zeiϕ sin θ, k2 − 2αyk − 2k2

Z cos θ − ε

)

×
(

A(s)
k

B(s)
k

)
= 0, (7)

with ε = 2m E/h̄2, αy = eEy/(4mc2), αz = eEz/(4mc2),
and k2

Z = −gem B/(4h̄m0c). Note that αy, αz < 0 in our
notation due to the negative electron charge. One obtains the
eigenenergy (divided by h̄2/2m)

ε(s)(k) = k2 + 2s sgn (k − k0)
√

C(k), (8)

with C(k) = (α2
y +α2

z )k
2 +2k2

Zk(αy cos θ −αz sin θ sin ϕ)+k4
Z

and k0 = −k2
Z(αy cos θ − αz sin θ sin ϕ)/(α2

y + α2
z ) being the

wavenumber at which the ‘energy gap’ becomes smallest (see
figure 2). The corresponding eigenfunctions are

φ
(s)
k (x) = 1

√
2π

√
1 +

∣∣∣a(s)
k

∣∣∣
2

eikx

(
a(s)

k
1

)
, (9)

with

a(s)
k = −iαzk − k2

Ze−iϕ sin θ

αyk + k2
Z cos θ − s sgn (k − k0)

√
C(k)

(10)

and the spin expectation values are given by

〈σx + iσy〉k,s = 2

(
a(s)

k

)∗

1 +
∣∣∣a(s)

k

∣∣∣
2
, 〈σz〉k,s =

−1 +
∣∣∣a(s)

k

∣∣∣
2

1 +
∣∣∣a(s)

k

∣∣∣
2

.

(11)
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Figure 2. Dispersion and spin expectation values on the (s = +)-branch for a magnetic field in the (a) x-, (b) y- and (c) z-direction,
αy/α = −0.6, αz/α = −0.8, kZ/α = 0.5. The spin on the (s = −)-branch points in the opposite direction, i.e. 〈σi〉k,s = −〈σi 〉k,−s . The shape
of the dispersion and the k-value at which the ‘energy gap’ becomes smallest clearly depends on the direction of the magnetic field.

As can be seen from equation (11), the necessary condition
〈σx 〉2

k,s + 〈σy〉2
k,s + 〈σz〉2

k,s = 1 holds for all values of s
and k. The existence of the confinement in the y-direction
(represented by αy) leads to a rotation of the spin out of the
x–y-plain into the z-direction. This indicates that the ratio of
αy and αz is crucial for the spin direction.

The energy dispersion equation (8) and the spin
expectation values on the (s = +)-branch are shown in figure 2

as a function of k, with k given in units of α =
√

α2
y + α2

z

and the energy in units of Eα = h̄2α2/2m. For |k| � α the
spin expectation values reach their asymptotic, k-independent
values. The spin on the (s = −)-branch points in the opposite
direction, i.e. 〈σi 〉k,s = −〈σi 〉k,−s , and is not shown explicitly
here. In combination with the fact that for B = (B, 0, 0),
〈σy〉k,s and 〈σz〉k,s are symmetric with respect to k = 0 on
both branches, this explains why there is no ground state
magnetization in the y- and z-direction for B being parallel
to the wire. However, there is a nonvanishing ground state
magnetization in the x-direction. The ‘energy gap’ is given by
4
√

C(k0) (see equation (8)) and does not necessarily decrease
from its maximum value 4k2

Z, if B is tilted against ex as stated
in [1]. In units of the Zeeman energy EZ = 2h̄2k2

Z/2m,
the size of the ‘gap’ EG for arbitrary magnetic field B =
B(sin θ cos φ, sin θ sin φ, cos θ) is given by

EG

EZ
= 2 − 2

(
αy cos θ − αz sin θ sin φ

)2

α2
. (12)

Therefore, a finite αy term is necessary for opening the ‘gap’
for B ‖ ey . To emphasize this effect, we choose the parameter

set (αy, αz , kZ)/α = (−0.6,−0.8, 0.5) in figure 2. In many
experimental systems the confining potential in the y-direction
might be much weaker than in the z-direction. In this case
|αy | � |αz| but subband mixing becomes relevant. The
latter strongly affects the spin-dependent transport properties
as e.g. investigated in [8], and the polarization effects discussed
here can be expected to disappear. A strong confinement in the
y-direction leading to a sizable αy is thus essential to achieve
spin polarization in the present setup. The lower dispersion
branch in figure 2 has a ‘W’-like shape. For B = (B, 0, 0), the
condition for this behavior is α2

y+α2
z > 2k2

Z and becomes much
more complex for arbitrary magnetic field. We now focus on
the situation where B = (B, 0, 0).

The transmissions tss ′ (conductance divided by e2/h̄) of an
electron current at fixed Fermi energy EF passing a potential
step in the wire direction (see figure 1(a)) are obtained by
assuming continuity of the wavefunctions and their derivatives
at the interface. Here the first index labels the branch to
the left and the second index labels the branch to the right
of the potential step. It was argued in [14] that one has to
consider the continuity of the wavefunction’s flux and not
simply its derivative, but in our setup both conditions lead to
the same equations as we consider a homogeneous SOI. The
total transmission T is the sum of the four components t++,
t+−, t−+, and t−−. To the right of the potential and for momenta
|k| � α, one can assign spins with quantum numbers ↑,↓ and
a properly chosen quantization axis to the branches s = +,−
because of the independence of 〈σ 〉k,s on k. However, the

3
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Figure 3. Polarization of the transmission current at a potential step
as a function of the Fermi energy for V0/EZ = 15 and α/kZ = 2,
2.5, 3, 5. The total polarization P is sizable for energies in the ‘gap’
(indicated by the arrows). In this regime it is mostly carried by Py

and Pz . The polarization becomes negligible for energies outside the
‘gap’ where Px dominates.

polarization vector is given by

P = t++ + t−+
T

〈σ 〉k,+ + t+− + t−−
T

〈σ 〉k,−. (13)

Since the potential step geometry was already dis-
cussed [1], we will only shortly mention the influence of the
additional term H ′

R, defined in equation (4), and discuss the
interesting case of a potential barrier (see figure 1(b)) in more
detail. The latter can experimentally be achieved by adding
gates to the 1D quantum wire. As shown in figure 3, the to-
tal polarization P = |P| of the current passing the potential
step is large for energies in the ‘gap’ and increases with α.
Similar to the transmissions tss ′ , P as well as the parallel po-
larization Px depend only on V0, kZ, and α for B ‖ ex and not
on αy and αz independently. The relevant energy scale of the
polarization shown in figure 3 is given by EZ, which defines
the size of the ‘gap’ (see equation (12)). Therefore, energies
are given in units of EZ and wavevectors in units of kZ. The
same holds for the transmissions and polarizations shown fur-
ther down (see figures 4 and 5). The parameters in figure 3 are
V0/EZ = 15, and α/kZ = 2, 2.5, 3, 5. The energy offset is
chosen such that EF/EZ = 0 corresponds to the middle of the
‘gap’. The parallel polarization Px gives the main contribution
to the total polarization as the energy departs from the ‘gap’,
Px/P → 1. However, in this region the total polarization is
negligible and within the ‘gap’, the parallel component plays
an inferior role. The ratio of the two perpendicular polariza-
tions is given by |Pz/Py | = αy/αz . Therefore, the orthogonal
polarization P⊥ = (0, Py, Pz) can be rotated within the y–z-
plane by adjusting αy and αz .

Next we study the transmission current at a potential
barrier of height V0 and width 2xc (see figure 1(b)). This
situation might be more realistic than a simple potential step
if one thinks of further structuring by applying gates to the
quantum wire.

Figure 4 shows the four components of the transmission
as a function of EF/EZ for α/kZ = 2, 2.5, 3, V0/EZ = 15,
and kZxc = 1. Again, the SOI affects the transmissions tss ′

only via α. Interestingly and in contrast to the potential step,

Figure 4. Partial transmissions at a potential barrier as a function of
the energy for V0/EZ = 15 and α/kZ = 2, 2.5, 3.

Figure 5. Polarization of the transmission current at a potential
barrier as a function of the energy for the same parameters as in
figure 4. The polarization is sizable for energies well beyond the
‘gap’ (indicated by the arrows) and shows oscillatory behavior. The
x-component Px is only relevant in regimes where the total
polarization is small.

the s-flipping transmissions are degenerate, t+− = t−+. This
can be understood, if one considers the possible s-flips at the
two interfaces leading to an overall s-flip. Labeling the left
interface (1) and the right (2), one simply has to take the sum
of the products of transmissions at each interface and obtains

t+− = t++(1)t+−(2) + t+−(1)t−−(2),

t−+ = t−−(1)t−+(2) + t−+(1)t++(2).
(14)

An analysis of the potential step problem shows that the
s-conserving transmissions t++ and t−− are independent of
the sign of V0 and the s-flipping transmissions just swap,
i.e. t+−(1) = t−+(2) and t−+(1) = t+−(2). This leads
to exactly the same values of t+− and t−+ in equation (14).
The exponential suppression of t++(1) and t−+(1) for energies
within the ‘gap’ does not affect this behavior. The s-conserving
transmissions t++ and t−− show an oscillatory behavior, which
is well known from scattering off a potential step at vanishing
SOI. However, especially for low energies, the amplitude
strongly depends on α. The s-flipping transmissions t+− and
t−+ oscillate as well. The second peak of t++, which lies in
the ‘energy gap’, is suppressed compared to t−−, since right
moving (s = +)-waves are exponentially damped in the barrier
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region and therefore, as shown in [1], t−− is the dominant
component at each interface in this energy range.

Figure 5 shows P and Px/P for the same parameters as in
figure 4. and α/kZ = 2, 2.5, 3. Similarly to the potential step
case, P = |P| and Px only depend on α and not on αy and αz

independently. Surprisingly, the polarization now has a sizable
value in an energy interval much bigger than the ‘gap’, which
just goes from −EZ to EZ (see the arrows in figure 5). This
behavior must be contrasted to the polarization in the case of a
potential step as shown in figure 3 and first discussed in [1].
It can be traced back to the energy dependence of t+− and
t−+ shown in figure 4. Both have finite weight well beyond
the ‘energy gap’. This might be due to interference effects of
transmitted and reflected waves in the barrier region.

The conditions for the experimental realization of a spin-
polarized current are discussed in [1] and can straightforwardly
be extended to the setups considered here.

3. Lattice model

In a next step, we are aiming at constructing a tight-binding
lattice model which in appropriate parameter regimes shows
similar physics as our continuum model. This will put us in
a position to study the effect of electron–electron interaction
neglected so far using the functional renormalization group
method [12, 13]. In 1D wires the two-particle interaction is
known to strongly alter the low-energy physics of many-body
systems leading to so-called Luttinger liquid behavior [15]. It
can be expected that the interplay of the SOI effects discussed
above and correlation effects leads to interesting physics.

The SOI can be modeled by spin-flip hopping terms with
amplitude αy and αz in a usual tight-binding model [7]. We
start with a representation of the Hamiltonian in terms of
Wannier states | j, σ 〉 with j ∈ Z labeling the lattice site
and σ = ↑,↓ labeling the spin. The spin quantization is
chosen along the z-direction. With c†

j,σ being the creation
operator of an electron at site j with spin σ , the lattice
model Hamiltonian for an arbitrary magnetic field B =
B(sin θ cos ϕ, sin θ sin ϕ, cos θ) can be written as

H = H0 + Hpot + HR + HZ, (15)

with the free part

H0 = ε
∑
j,σ

c†
j,σ c j,σ − t

∑
j,σ

(
c†

j+1,σ c j,σ + c†
j,σ c j+1,σ

)
, (16)

containing the on-site energy and the conventional (spin-
conserving) hopping, external potential (due to e.g. nano-
device structuring)

Hpot =
∑
j,σ

Vj,σ c†
j,σ c j,σ , (17)

the spin-flip (Rashba) hopping terms

HR = −αz

∑
j,σ,σ ′

(
c†

j+1,σ

(
iσy

)
σ,σ ′ c j,σ ′ + H.c.

)

+ αy

∑
j,σ,σ ′

(
c†

j+1,σ (iσz)σ,σ ′ c j,σ ′ + H.c.
)

, (18)

and the Zeeman term

HZ = 2k2
Z

∑
j,σ,σ ′

c†
j,σ

[
(σx )σ,σ ′ sin θ cos ϕ

+ (
σy

)
σ,σ ′ sin θ sin ϕ + (σz)σ,σ ′ cos θ

]
c j,σ ′. (19)

We show the analogy to the continuum case suppressing Hpot

and take as an ansatz for the corresponding eigenstates4

|k, s〉 =
∑
j,σ

as
σ (k)eik j | j, σ 〉. (20)

This leads to the eigenenergies

E (s)(k) = ε − 2t cos k + 2s sgn (k − k0)
√

D(k), (21)

with

k0 = arcsin
[−k2

Z(αy cos θ − αz sin θ sin ϕ)/(α2
y + α2

z )
]

(22)

and

D(k) = (α2
y + α2

z ) sin2 k + k4
Z + 2k2

Z sin k

× (
αy cos θ − αz sin θ sin ϕ

)
. (23)

Equation (21) has almost the same form as the continuum
version equation (8). In fact, choosing the on-site energy
ε = 2t , which corresponds just to an overall energy shift,
and substituting cos k by 1 − k2/2 and sin k by k, which is
valid for sufficiently small |k|, we get exactly the same form.
Note however that, in contrast to the continuum case, αy, αz

and k2
Z now have the unit of energy, but since c(s)

k , defined in
equation (24) is dimensionless, all formulas remain valid. We
choose for the eigenstates equation (20) as

↓(k) = 1 and obtain

as
↑(k) = c(s)

k with

c(s)
k = −iαz sin k − k2

Ze−iϕ sin θ

αy sin k + k2
Z cos θ − s sgn (k − k0)

√
D(k)

, (24)

and the spin expectation values have exactly the continuum
form

〈σx + iσy〉k,s = 2

(
c(s)

k

)∗

1 +
∣∣∣c(s)

k

∣∣∣
2
, 〈σz〉k,s =

−1 +
∣∣∣c(s)

k

∣∣∣
2

1 +
∣∣∣c(s)

k

∣∣∣
2

.

(25)
The energy dispersions and the spin expectation values for
magnetic fields in x-, y-, and z-direction are shown in figure 6.
Besides the cosine-like structure, which becomes especially
relevant near the upper band edges (k ≈ ±π ), the dispersion
and spin expectation values have the same shape as in the
continuum model. A direct comparison of figure 6 and
figure 2 shows that our lattice model reproduces the low-energy
physics, i.e. for |k − k0| < π/2, observed in the continuum.
As above we only show the spin expectation values on the
(s = +)-branch. The spin on the (s = −)-branch points in the
opposite direction, i.e. 〈σi 〉k,s = −〈σi 〉k,−s . The direct relation
between the dispersion and the spin expectation values for
energies of the order of the ‘gap’ is the essential feature leading
to the remarkable scattering properties of the continuum model
(and eventually a spin-polarized conductance) at steps and
barriers. One can thus expect similar transport characteristics
to be realized in the lattice model.
4 We choose the lattice spacing a = 1. Therefore, k becomes dimensionless.
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Figure 6. Lattice dispersion and spin expectation values on the (s = +)-branch for a magnetic field in the (a) x-, (b) y- and (c) z-direction for
t/α = 1, αy/α = −0.6, αz/α = −0.8, k2

Z/α = 0.25. The spin on the (s = −)-branch points in the opposite direction, i.e. 〈σi 〉k,s = −〈σi 〉k,−s .
For |k − k0| < π/2 one obtains exactly the same behavior as in the continuum case.

4. Conclusions

We have investigated the dispersion and spin expectation
values of a 1D electron system with SOI as well as arbitrary
magnetic field, and have shown that an additional SOI term
resulting from the lateral confinement of a 2DEG to a 1D
wire geometry leads to a rotation of the spin out of the 2D
plane. For the case of a magnetic field parallel to the quantum
wire, the transmission and polarization of a linear response
current at a potential step as well as at a potential barrier
were studied. For the latter, we observed an extended energy
range, where significant spin polarization can be achieved. We
showed that this spin polarization can be rotated out of the
plane of the 2DEG arbitrarily by adjusting the SOI constants
αy and αz . The potential barrier describes a setup which can
experimentally be achieved by adding further gates to the wire
geometry. We then constructed a lattice model which shows
the same low-energy physics as the continuum model. This
lattice model now enables us to investigate the interplay of SOI
and Coulomb interaction in quantum wires with potential steps
and barriers using the functional renormalization group method
[12, 13].
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